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Dirichlet-to-Neumann (DtN) boundary conditions for unbounded wave guides
in two and three dimensions are derived and analyzed, defining problems that are
suitable for finite element analysis. In the most general cases considered wave num-
bers may vary in arbitrary cross sections. The full DtN operator, in the form of
an infinite series, is exact. Nonunique solutions may occur when this operator is
truncated. Simple criteria for the number of terms in the truncated operator that guar-
antee unique solutions are presented. A simple modification of the truncated operator
leads to uniqueness for any number of terms. Numerical results validate the perfor-
mance of DtN formulations for wave guides and confirm the criteria for unique-
ness. c© 1998 Academic Press

1. INTRODUCTION

Problems in unbounded spatial domains are encountered frequently in various fields of
application, such as acoustics, aerodynamics, electromagnetics, geophysics, and meteorol-
ogy. Such problems pose a unique challenge to computation, since the unbounded region is
in appropriate for direct discretization. A variety of numerical methods for exterior problems
is reviewed in [16].

One commonly used method is to specify boundary conditions on anartificial boundary.
For a linear scalar problem, this procedure may be summarized as follows:

(a) Introduce an artificial boundaryB, which partitions the original unbounded domain
into two nonoverlapping regions: a bounded computational domainÄ and its unbounded
complementD.

(b) By analyzing the problem inD, obtain a relation onB (exact or approximate)
involving the unknown solution and its derivatives.
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(c) Use this relation as a boundary condition onB, to obtain a well-posed problem
in Ä.

(d) Solve the problem inÄ by computation, e.g., with the finite element method.

The relation obtained in step (b) and used as a boundary condition in step (c) is called an
artificial boundary condition(ABC), or, in the context of wave problems, anon-reflecting
boundary condition. The latter name comes from the fact that such a boundary condition
is aimed at eliminating spurious reflection of waves fromB, which is otherwise present
[15].

A standard ABC which is often imposed onB is simply the condition at infinity. However,
in this caseÄ must be quite large, or else the ABC gives rise to spurious reflections and
pollutes the numerical solution [15]. On the other hand, a large computational domain
is inefficient, leading to a large number of degrees of freedom. Therefore, the trend in
recent work is to use a more accurate ABC onB, which enables the use of a smaller
computational domain. During the last two decades, many improved ABCs for various
problems in unbounded domains were proposed (see reference in [15, 16]).

Most of the ABCs that have been proposed are local and approximate. A smaller number
of exactnonlocal ABCs have been devised for various problems in unbounded domains.
We mention the ABCs of Gustafssonet al. [11, 28], Hagstromet al. [6, 29, 30 31, 32, 33],
Ting and Miksis [52], Givoli and Cohen [18], Grote and Keller [25, 27], and Tsynkovet al.
[50, 53, 54].

For general linear elliptic problems, Keller and Givoli [19, 37] devised an exact ABC on
an artificial boundary of a simple shape (e.g., a circle or a sphere), called the Dirichlet-to-
Neumann (DtN) boundary condition. Givoli, Keller, and others proposed combining DtN
boundary conditions with finite element methods as a general approach to solve linear
elliptic problems in unbounded domains [14, 16, 19, 20, 23, 37, 47]. In [17], the method
was extended to treat the hyperbolic linear wave equation.

The DtN method has been shown to possess good computational properties and to be
very effective in practice. It has been further analyzed and improved by Harari and Hughes
[34, 35], Grote and Keller [26], and Malhotra and Pinsky [43]. The relation between the DtN
method and the mode-matching method has been established by Astley [1]. Other schemes
that use DtN-related ideas for various problems and configurations, can also be found in
[3, 7, 10, 12, 13, 24, 39, 42, 44, 45, 55].

Similar to problems in exterior domains, unbounded acoustic wave guides [40, 49], or
ducts, require special treatment for computation. For example, a parallel plate wave guide
is handled by a sequence of localized radiation conditions in [38], and by integral equations
in [41].

In the following, we derive DtN boundary conditions for unbounded wave guides.
Boundary-value problems for unbounded acoustic wave guides in two and three dimen-
sions, and their cross-sectional eigenfunctions are presented in Section 2. DtN formulations
for computing such problems with finite elements are presented in Section 3. Analysis of
these formulations shows the boundary conditions to be exact and presents simple crite-
ria for selecting the number of terms to guarantee unique solutions. Local approximations
provide a basis for modified boundary conditions that are unique for any number of terms.
Numerical results that validate the performance of the finite elements with DtN boundary
conditions in two and three dimensions and confirm the analytical results are presented in
Section 4. Conclusions are drawn in Section 5.



             

202 HARARI, PATLASHENKO, AND GIVOLI

FIG. 1. An unbounded wave guide with rectangular cross section.

2. BOUNDARY-VALUE PROBLEMS FOR WAVE GUIDES

LetR ⊂ Rd be ad-dimensional, semi-infinite, wave guide or duct. The regionR may
be partitioned into a bounded domainÄ and a unbounded cylinderD=R\Ä of uniform
cross sectionC. The cylinderD is aligned so that its axis and, consequently, the wave guide
walls are parallel to thez-axis of a Cartesian coordinate system (see Fig. 1 for an example
with a rectangular cross section). In two dimensions the wave guide is a semi-infinite strip
of constant widthb (Fig. 2). The interface between the two regionsÄ andD is the planar
surfaceB, normal to thez-axis and located atz= z0. ThusD={x | x ∈ R, z > z0}. The
surface of the cylinder is denotedγ (Fig. 1). In two dimensions we position the coordinate
system so that the wallsγ are aty= 0 andy= b (Fig. 2). Consequently, the cross section
C is the interval 0< y< b and the interfaceB is the straight segment 0< y< b at z= z0.

In the regionR we wish to solve the Helmholtz equation

1u+ k2u+ f = 0 (1)

related to time-harmonic acoustic waves, subject to boundary conditions on the boundary

FIG. 2. An unbounded wave guide in two dimensions.
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ofR and the radiation condition thatu is bounded and does not contain incoming waves as
z→∞. (For a rigorous treatment of radiation conditions for wave guides see [46].) Here
u : R̄ → C is the spatial component of the acoustic pressure;1 is the Laplace operator;
k ∈ C is the wave number, Imk ≥ 0; and f :R → C is a prescribed source distribution.
The artificial boundary is located so thatf = 0 in D.

The boundary-value problem in theboundedregionÄ=R\D may be solved by domain-
based computation. For this purpose, boundary conditions must be specified on the artificial
interfaceB. In the following we derive such boundary conditions by the DtN method. Three
cases of wall conditions onγ are considered,

∂u

∂ν
= 0 Case 1 (2)

u = 0 Case 2 (3)
∂u

∂ν
+ ηu = 0 Case 3, (4)

where ∂u
∂ν

is the normal derivative. The coefficientη is related to impedance. Subsequent
derivations and analyses are performed for Case 3, when wall conditions onγ need to be
specified, with Cases 1 (Neumann) and 2 (Dirichlet) taken as limits forη= 0 andη→∞,
respectively.

2.1. Cross-sectional Eigenfunctions in a Cylinder

Based on separation of variables for the Helmholtz equation, any solution inD satisfying
the radiation condition may be modally decomposed

u =
∞∑

n=0

AnYn exp(iµn(z− z0)), (5)

where

An =
∫
B

Ynu dC. (6)

The modes are ordered withdescendingvalues of the separation constantsµ2
n.

The separation constants, or cross-sectional eigenvaluesµ2
n and orthogonal eigenfunc-

tions Yn(y) andYn(x, y) in two and three dimensions, respectively, are solutions of the
cross-sectional eigenvalue problem

1Yn +
(
k2− µ2

n

)
Yn = 0, in C (7)

∂Yn

∂ν
+ ηYn = 0, on ∂C, (8)

where∂C is the boundary ofC. There may be a finite number of propagating modes, for
whichµ2

n> 0 (the first mode,n= 0, is always propagating, except in the case of Dirichlet
wall conditions,η= 0, in which it is trivial); there may be a single cutoff mode, for which
µ2

n= 0; and there is an infinite number of evanescent modes, for whichµ2
n< 0. In the most

general case considered, the wave number may vary in the cross section of the wave guide,
namely,k= k(y) and k= k(x, y) in two and three dimensions, respectively. The cross-
sectional eigenvalue problem is then solved numerically for a finite number of eigenpairs.
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2.2. Constant Wave Number in a Rectangular Cross Section

In the special case of a constant wave number in a wave guide with rectangular cross sec-
tion 0< x<a and 0< y< b, the cross-sectional eigenvalue problem is solved analytically

Y00 = 2ηe−ηxe−ηy√
(1− e−2ηa)(1− e−2ηb)

, µ00 =
√

k2+ 2η2 (9)

and form≥ 1 andn≥ 1

Ym0 =
√√√√(2

a

)/(
1+

(
ηa

mπ

)2
)√

2η

1− e−2ηb

(
cos

(
mπx

a

)
− ηa

mπ
sin

(
mπx

a

))
e−ηy

(10)

µm0 =
√

k2−
(

mπ

a

)2

+ η2

Y0n =
√

2η

1− e−2ηa

√√√√(2

b

)/(
1+

(
ηb

nπ

)2
)

e−ηx

(
cos

(
nπy

b

)
− ηb

nπ
sin

(
nπy

b

))
(11)

µ0n =
√

k2+ η2−
(

nπ

b

)2

Ymn = 2√
ab

/√√√√(1+
(
ηa

mπ

)2
)(

1+
(
ηb

nπ

)2
)(

cos

(
mπx

a

)
− ηa

mπ
sin

(
mπx

a

))

×
(

cos

(
nπy

b

)
− ηb

nπ
sin

(
nπy

b

))
, µmn =

√
k2−

(
mπ

a

)2

−
(

nπ

b

)2

.

(12)

These eigenfunctions are orthonormal∫ a

0

∫ b

0
YklYmn dx dy= δkmδln. (13)

In the limits of Neumann and Dirichlet wall conditions, respectively, the eigenfunctions are

lim
η→0

Y00 = 1√
ab
, lim

η→∞Y00 = 0 (14)

and form≥ 1 andn ≥ 1

lim
η→0

Ym0 =
√

2

ab
cos

mπx

a
, lim

η→∞Ym0 = 0 (15)

lim
η→0

Y0n =
√

2

ab
cos

nπy

b
, lim

η→∞Y0n = 0 (16)

lim
η→0

Ymn = 2√
ab

cos
mπx

a
cos

nπy

b
, lim

η→∞Ymn = 2√
ab

sin
mπx

a
sin

nπy

b
. (17)
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This double index notation is converted to the single index notation of (5) by simply ordering
the modes with descending values ofµ2

n, starting withµ0=µ00 (orµ0=µ11 for Dirichlet
wall conditions).

2.3. Constant Wave Number in a Strip

In the special case of a constant wave number in a strip of constant width 0< y< b, the
cross-sectional eigenvalue problem is solved analytically

Y0 =
√

2η

1− e−2ηb
e−ηy, µ0 =

√
k2+ η2 (18)

and forn ≥ 1

Yn =
√√√√(2

b

)/(
1+

(
ηb

nπ

)2
)(

cos

(
nπy

b

)
− ηb

nπ
sin

(
nπy

b

))
,

(19)

µn =
√

k2−
(

nπ

b

)2

.

These eigenfunctions are orthonormal∫ b

0
YmYn dy= δmn. (20)

In the limits of Neumann and Dirichlet wall conditions, respectively, the eigenfunctions are

lim
η→0

Y0 = 1√
b
, lim

η→∞Y0 = 0 (21)

and forn ≥ 1

lim
η→0

Yn =
√

2

b
cos

nπy

b
, lim

η→∞Yn = −
√

2

b
sin

nπy

b
. (22)

3. DtN FORMULATIONS

The DtN boundary condition is

∂u

∂z
= −Mu onB. (23)

The two-dimensional map is obtained from the normal derivative of the modal representation
(5) on the interfaceB

Mu(y, z0) = −i
∞∑

n=0

µn

∫ b

0
Yn(y)Yn(y

′)u(y′, z0) dy′, 0< y < b. (24)

(In Case 2, Dirichlet wall conditions, the first term is trivial.) The three-dimensional map is
also obtained from the normal derivative of the modal representation (5) on the interfaceB

Mu(x, y, z0) = −i
∞∑

n=0

µn

∫
C

Yn(x, y)Yn(x
′, y′)u(x′, y′, z0) dx′ dy′, (x, y) ∈ C.

(25)
(Note that in Case 2, Dirichlet wall conditions, trivial terms areexcludedfrom the DtN map.
Thus, e.g., for Dirichlet wall conditions in a rectangular cross section with a constant wave
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number, the first and largest eigenvalue isµ2
0= k2− (π/a)2− (π/b)2, which isµ2

11 in the
double-index notation.)

3.1. Uniqueness

To analyze the uniqueness of solutions to the DtN formulation we define the following
functions:

• u1 is the solution of the original problem with the unbounded wave guide inR.
• u2 is composed of two parts as

u2 =
{

uint
2 , x ∈ Ä

uext
2 , x ∈ D,

whereuint
2 is the solution of the DtN problem inÄ anduext

2 is the solution of the problem in
D with uext

2 = uint
2 onB.

• e:= u1− u2 satisfies the homogeneous Helmholtz equation inÄ ∪ D with homo-
geneous boundary data, and satisfies the radiation condition. Likewise for the complex
conjugatēe.

LEMMA. Let u be a solution of the homogeneous Helmholtz equation(k2> 0) in D. If

lim
z→∞

∫
C
|u|2 dC = 0 (26)

then u≡ 0 in D.

Proof. This is by a theorem due to Rellich [56, p. 56].

THEOREM. uint
2 = u1|Ä and hence theDtN solution is unique, whenever the original

solution is unique.

Note. A cutoff mode of the original solution may vary by an arbitrary multiplicative
constant.

Proof. The first part of the proof is to establish the continuity ofu2 onB, namely

uext
2 = uint

2 (27)

∂uext
2

∂z
= −Muext

2

= −Muint
2

= ∂uint
2

∂z
, (28)

where the first line follows from the definition ofuext
2 , the second line is the definition of

the DtN map,M , the third line follows from the first and the last line from the definition of
uint

2 . These continuity properties are inherited bye.
Showing that limz→∞

∫
C |e|2 dC= 0 completes the proof. By the Lemma, this implies that

e≡ 0 in D. By the continuity ofeand its normal derivative onB, the DtN map is enforcing
homogeneous Dirichletand Neumann boundary conditions on the artificial boundaryB.
This over-specification of boundary data precludes non-trivial solutions inÄ.

Recall the modal representation of solutions inD, Eq. (5). To complete the proof we
show that limz→∞

∫
C |e|2 dC= 0 for each type of mode separately.



           

DtN MAPS FOR UNBOUNDED WAVE GUIDES 207

For the evanescent modes this is straightforward:|e|2→ 0 asz→∞ sinceµ2
n< 0 and

hence limz→∞
∫

C |e|2 dC= 0.
For the cutoff modeµ2

n= 0, so thate is independent ofz in D. Thus, the DtN boundary
condition for this case, a homogeneous Neumann boundary condition, is exact, andu2= u1

if u1 is unique.
For propagating modes we consider the variational form of the homogeneous problem

(homogeneous equation with homogeneous boundary data) inÄ, which may be written as

a(e, e) = 0, (29)

where

a(w, u) = (∇w,∇u)− (w, k2u)+ (w,Mu)B (30)

sincee is an admissible weighting function. Directing our attention to the imaginary part
yields

0 = −Im a(e, e)

=
∫
B
−Im{ēMe} dC

= 1

2i

∫
B

(
ē
∂e

∂z
− e

∂ē

∂z

)
dC. (31)

This is a statement of zero energy flux through the artificial boundary. By continuity
of e and its normal derivative on the artificial boundary, this expression may be related to
quantities in the “tail”D

0 =
∫
B

(
ē
∂e

∂z
− e

∂ē

∂z

)
dC

=
∫

D
(ē1e− e1ē) dÄ− lim

z→∞

∫
C

(
ē
∂e

∂z
− e

∂ē

∂z

)
dC

= − lim
z→∞

∫
C

(
ē
∂e

∂z
− e

∂ē

∂z

)
dC. (32)

The second line is obtained by integration by parts and the last follows from the fact thate
satisfies the homogeneous Helmholtz equation inD.

Each propagating mode is outgoing and hence satisfies the radiation condition, written
in integral form

0 = lim
z→∞

∫
C

∣∣∣∣∂e

∂z
− iµne

∣∣∣∣ dC

= lim
z→∞

∫
C

(∣∣∣∣∂e

∂z

∣∣∣∣2+ µ2
n|e|2+ iµn

(
ē
∂e

∂z
− e

∂ē

∂z

))
dC

= lim
z→∞

∫
C

(∣∣∣∣∂e

∂z

∣∣∣∣2+ µ2
n|e|2

)
dC, (33)

where the third line follows from (32). For propagating modesµ2
n> 0 so that

lim
z→∞

∫
C
|e|2 dC = 0 (34)

which completes the proof.
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3.2. Truncated DtN Maps

Let M N be the DtN maptruncatedafter N terms. In two dimensions

M Nu(y, z0) = −i
N−1∑
n=0

µn

∫ b

0
Yn(y)Yn(y

′)u(y′, z0) dy′, 0< y < b. (35)

Recall that the modes are ordered with descending eigenvaluesµ2
n. (In Case 2, Dirichlet

wall conditions, the first term is trivial so thatM N containsN− 1 non-trivial terms.) In
three dimensions

M Nu(x, y, z0) = −i
N−1∑
n=0

µn

∫
C

Yn(x, y)Yn(x
′, y′)u(x′, y′, z0) dx′ dy′, (x, y) ∈ C.

(36)
(In Case 2, Dirichlet wall conditions, trivial terms areexcludedfrom the truncated map, in
contrast to the treatment in two dimensions. Thus, e.g., for Dirichlet wall conditions in a
rectangular cross section with a constant wave number, the first and largest eigenvalue is
µ2

0 = k2− (π/a)2− (π/b)2, which isµ2
11 in the double-index notation.)

Let v be the difference between two solutions of the problem inÄ with the DtN map
replaced byM N . v is a solution of the homogeneous problem. Thus, we have a statement of
zero energy flux through the artificial boundary as before, this time in terms of the truncated
map ∫

B
Im{v̄M Nv} dx dy= 0. (37)

Again we employ modal decomposition

v =
∞∑

n=0

AnYn on B, (38)

where

An =
∫
B

Ynv dC. (39)

Consider the one-term approximation(N= 1) in three dimensions

M1v(x, y, z0) = −iµ0

∫
C

Y0(x, y)Y0(x
′, y′)v(x′, y′, z0) dx′ dy′

= −iµ0Y0(x, y)
∫

C
Y0(x

′, y′)
∞∑

n=0

AnYn(x
′, y′) dx′ dy′

= −iµ0A0Y0(x, y) (40)

by the orthonormality of the eigenfunctionsYn. The condition of zero energy flux is

0 =
∫

C
Im{v̄(x, y, z0)M

1v(x, y, z0)} dx dy

= Im

{∫
C

∞∑
n=0

ĀnYn(x, y)(−iµ0A0Y0) dx dy

}
= −Im{iµ0}|A0|2. (41)
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Similarly, for theN-term approximation, we obtain the condition

N−1∑
n=0

Im{iµn}|An|2 = 0. (42)

The same procedure is used to derive an identical condition for the two-dimensional case. As
previously stated, there may be a finite number of propagating modes, for whichµn ∈ R+;
there may be a single cutoff mode, for whichµn= 0; and there is an infinite number
of evanescent modes, for which−iµn ∈ R+. The modes are ordered with descending
eigenvaluesµ2

n. Thus, the lowest modes are propagating modes, if any exist, followed by
the cutoff mode, if it exists, and then the evanescent modes.

If there are no more thanN propagating modes, then condition (42) impliesAn= 0 for
those modes. The truncated DtN condition is a homogeneous Neumann condition on higher
modes. This is exact for the cutoff mode, if it exists. There are no non-trivial solutions
associated with the evanescent modes. Thus, in this case the homogeneous problem has
only trivial solutions, and uniqueness of the original solution is not impaired.

If, however, there are more thanN propagating modes, then condition (42) implies
An= 0 only for n= 0, . . . , N− 1. Non-trivial contributions to higher propagating modes
of the homogeneous problem may exist, allowing non-unique solutions to occur.

Thus, the criterion for uniqueness is quite simple, selectN so thatµ2
N ≤ 0, i.e., all

propagating modes of the homogeneous problem are annihilated.
For constant wave numbers in a rectangular cross section, sufficient conditions for

the truncated DtN map in terms of a double sum with indicesm= 0, . . . ,M − 1 and
n= 0, . . . , N− 1 are

M ≥ ka/π and N ≥ kb/π. (43)

This criterion is not sharp in the sense that it may include non-propagating modes in the
truncated operator. However, this criterion cannot be improved if fixed limits are employed
on both indicesm andn. In Case 2, Dirichlet boundary conditions, fewer terms may be
taken

M ≥ ka/π − 1 and N ≥ kb/π − 1. (44)

For constant wave numbers in a strip we require

N ≥ kb/π. (45)

For variable wave numbers the eigenvaluesµ2
n are found numerically. For uniqueness, the

number of terms in the DtN map must be no less than the total number of positive eigenvalues
(which is finite). For this reason a Sturm sequence check [2, p. 943] should be employed
to verify that all positive eigenvalues are found. For a variable wave numberk= k(y) in a
strip, the number of terms in the DtN operator sufficient to guarantee uniqueness may be
conservatively estimated by

N ≥ max
0≤y≤b

k(y)b/π (46)

according to [8, p. 411].
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3.3. Local DtN Boundary Conditions

The truncated DtN map (in terms of a single sum, ordered with descending values ofµ2
n)

is exact for functions that consist of only the firstN modes. We now derive local boundary
conditions that inherit this property. Consider a function that consists of the firstN modes.
(For Dirichlet boundary conditions trivial terms are excluded from the three-dimensional
treatment, e.g.,µ0=µ11 in the double-index notation, and in two dimensions the first
mode,n= 0, is trivial so that all appearances ofY0 must be dropped from the following
presentation.) On the artificial boundary

u =
N−1∑
n=0

AnYn. (47)

The eigenfunctionsYn satisfy Eq. (7) and hence, forconstantwave numbers

1l Yn =
(
µ2

n − k2
)l

Yn, (48)

where

1l Yn = 1(. . .1(1Yn) . . .)︸ ︷︷ ︸
l times

(49)

is thel th power of the Laplacian inC. Thus we may write

1l u =
N−1∑
n=0

(
µ2

n − k2
)l

AnYn on B. (50)

The truncated DtN condition is

∂u

∂z
= i

N−1∑
n=0

µn AnYn on B. (51)

Comparing Eqs. (50) and (51) suggests expressing the coefficients as linear combinations

µn =
N−1∑
l=0

βl
(
µ2

n − k2
)l
, n = 0, . . . , N − 1, (52)

whereβl are obtained by solving thisN × N linear system. (For Dirichlet boundary con-
ditions in two dimensions, the first mode, and hence the first equation in (52), is trivial. An
upper limit ofN − 2 on the sum is employed in this case.) Substitution into (51) yields the
local expression, valid for constant wave numbers

∂u

∂z
= i

N−1∑
n=0

βn1
nu on B (53)

(again, with an upper limit ofN − 2 for Dirichlet boundary conditions in two dimensions).
The one-term local approximation is

∂u

∂z
= iµ0u on B (54)
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and for the case of Dirichlet boundary conditions in two dimensions

∂u

∂z
= iµ1u on B. (55)

These one-term expressions are also valid for the more general case of wave numbers that
vary within the cross section. An alternative approach [21] may be used to derive higher-
order local boundary conditions for varying wave numbers.

As previously noted, uniqueness of the solution corresponds to enforcing zero energy flux
through the artificial boundary, as in the first line of (41). Similarly, the difference between
two solutions to the DtN problem with a one-term local approximation,v, must satisfy

0 =
∫
B

Im{v̄iµ0v} dC

= Im{iµ0}
∫
B
|v|2 dC. (56)

If the first mode is propagating, i.e.,µ2
n > 0, then condition (56) implies thatv = 0 onB. In

addition,v satisfies the DtN boundary condition onB. Thusv satisfies homogeneous Dirich-
let and Neumann boundary conditions on the artificial boundary. This over-specification
of boundary data precludes non-trivial solutions in the computational domainÄ, which
implies uniqueness of solutions with a one-term local boundary condition. Adding terms
to the local approximation cannot alter this statement. If this is a cutoff mode, then the
local boundary condition is exact and higher modes are evanescent. Uniqueness is not an
issue if this mode is evanescent. Thus, uniqueness of the original solution is not impaired
in all cases, for any number of terms. (In the case of Dirichlet boundary conditions in two
dimensions, we substituteµ1 for µ0 and repeat the analysis.)

Our interest in local DtN boundary conditions is primarily as the basis of the modified
formulation that follows. The one-term local approximations are sufficient for this purpose.
Numerical comparisons of global and local DtN conditions have been performed previously
[48] and are not repeated here. For completeness, the conclusions of these comparisons are
summarized herein.

The global conditions are very robust. Moreover, once they are implemented in a finite
element code, one may use them very easily, taking into account any desired number of
terms. Their main disadvantage is that they require computations on the global level, which
is contrary to the usual architecture of finite element codes.

On the other hand, local boundary conditions have the advantage that they are incor-
porated in a finite element code in the usual manner, i.e., on the element level. They are
also more amenable to parallelization than the nonlocal conditions. The low-order local-
ized conditions are simple, but not always sufficiently accurate, especially for small wave
numbers. However, in the propagation regime, they are much more accurate than their non-
local counterpartsof equal orderin resolving the higher modes in the exact solution. For
problems where the first few modes are dominant, or where the wave number is large, they
should be satisfactory.

The high-order localized conditions are more accurate. However, only the odd-order ones
lead to a stable numerical scheme. Also, they require the use of special finite elements in
the layer adjacent to the artificial boundary. The number of element degrees of freedom
increases rapidly with the order, considerably increasing the computational effort.
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3.4. Modified DtN Formulations

The truncated operator is modified so that solutions are unique for any number of terms,
based on [26]. The idea is to consider any boundary condition on the artificial boundary,
for which the problem in the computational domain is well posed, and add it to the higher
modes only. To achieve this goal the modifying boundary operator is added to the global
DtN condition and subtracted from it. Only the subtracted part is truncated along with the
original operator. We employ the one-term local approximation (valid for variable wave
numbers) as the modifying operator. In three dimensions

∂u

∂z
(x, y, z0) = iµ0u(x, y, z0)+ i

N−1∑
n=1

(µn−µ0)

∫
C

Yn(x, y)Yn(x
′, y′)u(x′, y′, z0) dx′ dy′.

(57)
In two dimensions

∂u

∂z
(y, z0) = iµ0u(y, z0)+ i

N−1∑
n=1

(µn − µ0)

∫ b

0
Yn(y)Yn(y

′)u(y′, z0) dy′ (58)

and for Dirichlet boundary conditions in two dimensions

∂u

∂z
(y, z0) = iµ1u(y, z0)+ i

N−1∑
n=2

(µn − µ1)

∫ b

0
Yn(y)Yn(y

′)u(y′, z0) dy′. (59)

Uniqueness is not impaired for any number of terms since the one-term modified condition
is identical to the one-term local approximation.

3.5. Implementation

DtN boundary conditions are incorporated into finite element computation via the vari-
ational form of the boundary-value problem [14, 16, 19, 20, 23, 37, 47], see the third term
on the left-hand side of (30). The DtN contribution to the stiffness matrix is a truncation
and possible modification of∫

B
NAM NB dC = −i

∞∑
n=0

µn I AnI Bn, (60)

where

I An =
∫
B

NAYn dC (61)

and NA are standard finite element shape functions. The DtN contribution preserves the
symmetry of the underlying finite element equations but couples all of the degrees of
freedom on the artificial boundary.

The cross-sectional eigenvaluesµ2
n and orthonormal eigenfunctionsYn, needed to for-

mulate DtN boundary conditions, are presented explicitly in (18) and (19) for the case of
constant wave numbers in a strip, and in (9)–(12) for the case of constant wave numbers
in rectangular cross sections. (Recall, the double index notation is converted to single in-
dex notation by simply ordering the modes with descending values ofµ2

n, starting with
µ0 = µ00.)



              

DtN MAPS FOR UNBOUNDED WAVE GUIDES 213

In more general cases the cross-sectional eigenvalue problem is solved numerically for
a finite number of eigenpairs. The resulting discrete eigenvalue problem is generally not
positive definite since all propagating cross-sectional modes should be included in the DtN
map for uniqueness. Care must be taken to compute these modes accurately. A shift of the
eigenvalues [36, pp. 574, 575] may be employed in order to make the problem definite
and hence more amenable to treatment by commonly used eigenvalue solvers. The size of
the discrete eigenvalue problem should be much larger than the number of terms required,
which are the terms with the largest eigenvalues. Due to potential deterioration in the quality
of approximation of higher modes [51] the roles of the matrices of the discrete eigenvalue
problemK andM may be reversed [36, p. 579] for more accurate numerical solution of
the larger eigenvalues and corresponding eigenvectors. A Sturm sequence check [2, p. 943]
(also known as spectrum slicing) should be employed to verify that no eigenvalues are
missing.

4. NUMERICAL RESULTS

Numerical tests of the performance of the truncated and modified DtN conditions in
various wave guide configurations are presented in the following. Convergence tests were
performed in [22] and are not repeated here. Convergence rates of 2.006–2.007 in theL2

norm and 0.981–0.986 in theH1 semi-norm were obtained in these tests for both global
and local DtN conditions. These rates are optimal.

4.1. Constant Wave Number in a Strip

The following numerical results are for a two-dimensional unbounded wave guide of
constant widthb, with Neumann wall conditions (Case 1). A varying Dirichlet bound-
ary condition which satisfies the wall conditions1

2 − 3737
18 (

y
b)

2 + 10675
9 (

y
b)

3 − 21764
9 (

y
b)

4 +
18896

9 (
y
b)

5− 1984
3 (

y
b)

6 is specified on the boundary atz= 0, to excite significant contributions
to the first three cross-sectional modes. A computational domain, determined by selecting
z0 = b/4, is meshed with 40× 20 bilinear rectangles.

The cross-sectional eigenvaluesµ2
n and orthonormal eigenfunctionsYn(y), needed to

formulate DtN boundary conditions, are presented explicitly in (18) and (19) for the case of
constant wave numbers in a strip. The criterion for uniqueness is that the number of terms
in the truncated DtN operatorN be such thatµ2

N ≤ 0 (when the modes are ordered with
descending eigenvalues). For constant wave numbers this is equivalent toN ≥ kb/π . This
criterion is verified with numerical results from the problem described above, for various
wave numbers (Table 1), namely,N ≥ kb/π ⇐⇒ µ2

N ≤ 0.

TABLE 1

Verifying the Criterion for Uniqueness,

Constant Wave Number

kb kb/π No. of pos. eigenvalues

2 0.64 1
4 1.27 2
8 2.55 3

12 3.82 4
16 5.09 6
20 6.37 7
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FIG. 3. Dependence of the error on the number of terms in the truncated operator.

The effect of satisfying the criterion for uniqueness with the truncated boundary condition
is demonstrated in Fig. 3 for the same wave numbers as in Table 1. The relative error

E = ‖u
h − u‖B
‖u‖B (62)

in the L2(B) norm may be extremely high if the number of terms in the truncated DtN
operator is not sufficient for uniqueness. This is particularly evident atkb= 8, 12, and 20,
with errors on the order of 300% and higher! The somewhat anomalous behavior atkb= 16
may be due to its highest propagating mode(n = 5) having an eigenvalue close to zero.

As terms are added to the DtN condition the error decreases until it reaches a threshold
beyond which adding terms no longer improves the solution. This fact is due to the finite
number of significant modes in the boundary data. This behavior holds for all the wave
numbers in Fig. 3, as well as for subsequent numerical tests.

The modified boundary condition is unique for any number of terms in the operator. The
error with the modified boundary condition remains relatively low (less than 30%) even
when the criterion for uniqueness is not satisfied (Fig. 4).

We employ this problem to compare the global DtN conditions to known boundary
conditions: the Sommerfeld condition on the artificial boundary

∂u

∂z
− iku = 0, at z= z0 (63)

(which is identical to the lowest-order condition of many schemes, including the one-term
local DtN conditions) and the second-order Engquist–Majda scheme [9], which is

∂u

∂z
− iku− i

2k

∂2u

∂y2
= 0, at z= z0 (64)
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FIG. 4. Comparison of truncated and modified operators.

in the configuration considered. The real parts of the results forkb= 4 are compared to
the analytical solution in Fig. 5. The Sommerfeld condition and the one-term global DtN
condition (which is insufficient for uniqueness) provide poor results. The situation improves
considerably for the Engquist–Majda and the three-term global DtN conditions. Three terms
are sufficient for uniqueness of DtN in this case (see Table 1), and there is little difference
in the performance of truncated and modified DtN, when there are sufficient terms for
uniqueness (Fig. 4). Adding terms to the global DtN condition gives results that are barely
distinguishable from the analytical solution.

Comparisons to the Bayliss–Turkel conditions [4, 5] were performed in [22] and are
not repeated here. Only the first two Bayliss–Turkel boundary conditions are compatible
with finite elements. The one-term local DtN condition is much more accurate than the first
Bayliss–Turkel condition for all wave numbers. For small wave numbers, the solution obtai-
ned with the one-term local DtN condition is also much more accurate than that obtained with
the second Bayliss–Turkel condition. In the intermediate range, the second Bayliss-Turkel
condition is slightly more accurate. For large wave numbers the errors obtained with the
two conditions are similar.

4.2. Linearly Varying Wave Number in a Strip

The following results are obtained for the problem described above, with linearly varying
wave numbersk = kd+ (ku−kd)y/b. The cross-sectional eigenvaluesµ2

n and orthonormal
eigenfunctionsYn(y), needed to formulate DtN boundary conditions, are found numerically
in this case, by using a standard eigenvalue solver for a one-dimensional eigenvalue problem
discretized with 400 degrees of freedom. A Sturm sequences check [2, p. 943] is employed to
verify that no eigenvalues are missing. The accuracy of the modes employed is established
by numerical convergence studies. Numerical integration of (61) is performed in each
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FIG. 5. Comparison of boundary conditions along the artificial boundary.

element by the trapezoidal rule with sufficient points to account for the oscillations ofYn.
The linear variation ofk within each element is accounted for in computing the element
stiffness matrix.

Recall the criterion for uniqueness, that the number of terms in the truncated DtN operator
N be such thatµ2

N ≤ 0 (when the modes are ordered with descending eigenvalues). A
conservative estimate for the case of linearly varying wave numbers isN ≥ max{kd, ku}b/π .
This estimate is verified with numerical results from the problem described above, for
various values of the parameters withku> kd (Table 2), namely,N ≥ kub/π H⇒ µ2

N ≤ 0.
Note that the eigenvalue of the most oscillatory mode is bounded by the limit values of the
varying wave numberkd ≤ µ0 ≤ ku.

TABLE 2

Verifying the Criterion for Uniqueness, Linearly Varying Wave Number

kdb kub µ0b kub/π No. of pos. eigenvalues

2 4 3.20 1.27 1
2 8 6.64 2.55 2
2 12 10.34 3.82 3
2 16 14.10 5.09 3
2 20 17.92 6.37 4
6 8 7.34 2.55 3
6 12 10.82 3.82 3
6 16 14.50 5.09 4
6 20 18.24 6.37 5

10 12 11.42 3.82 4
10 16 14.92 5.09 5
10 20 18.60 6.37 5
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FIG. 6. Dependence of the error on the number of terms in the truncated operator(kdb = 2).

The effect of satisfying the criterion for uniqueness with the truncated boundary condition
is demonstrated in Figs. 6–8 for the same wave numbers as in Table 2. The relative error
may be quite high if the number of terms in the truncated DtN operator is not sufficient for
uniqueness.

4.3. Constant Wave Number in a Square Cross-section

The following numerical results are for a three-dimensional unbounded wave guide of
square cross sectiona= b, with Neumann wall conditions (Case 1). A varying Dirich-
let boundary condition which satisfies the wall conditions(16( x

a )
2 − 32( x

a )
3 + 24( x

a )
4 −

32
5 (

x
a )

5)(4( y
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2 − 8
3(

y
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3) − (4( x
a )

2 − 8
3(

x
a )

3)(8( y
b)

2 − 32
3 (

y
b)

3 + 4( y
b)

4) is specified on the
boundary atz= 0, to excite significant contributions to the first three cross-sectional modes.
A computational domain, determined by selectingz0 = b/2, is meshed with 14× 14× 7
trilinear cubes.

The cross-sectional eigenvaluesµ2
n and orthonormal eigenfunctionsYn(x, y), needed to

formulate DtN boundary conditions, are presented explicitly in (9)–(12) for the case of
constant wave numbers in rectangular cross sections. Recall, this double index notation is
converted to single index notation by simply ordering the modes with descending values
of µ2

n, starting withµ0=µ00. Table 3 shows the correspondence of the first nine cross-
sectional terms in a square. Due to the symmetry of eigenfunctions in a square,Ymn = Ynm

the ordering of terms 1 and 2, terms 4 and 5, and terms 6 and 7 can be reversed.
The criterion for uniqueness is that the number of terms in the truncated DtN operator

N be such thatµ2
N ≤ 0. For constant wave numbers in a square cross section, sufficient

conditions for the truncated DtN map expressed in terms of a double sum with indices
m= 0, . . . ,M − 1 andn= 0, . . . , N − 1 areM2+ N2≥ (ka/π)2.
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FIG. 7. Dependence of the error on the number of terms in the truncated operator(kdb = 6).

FIG. 8. Dependence of the error on the number of terms in the truncated operator(kdb = 10).
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TABLE 3

Correspondence of Double- and

Single-Index Notations for Cross-

sectional Modes in a Square

(m,n) n

(0,0) 0
(1,0) 1
(0,1) 2
(1,1) 3
(2,0) 4
(0,2) 5
(2,1) 6
(1,2) 7
(2,2) 8

The effect of satisfying the criterion for uniqueness with the truncated boundary condi-
tion is demonstrated in Fig. 9. For wave numbersk= 0, 2, 4, and 6 the number of terms
required isN= 1, 4, 6, and 19 (see, e.g., Table 3). The relative error may be extremely high
(approaching 1,000%!) if the number of terms in the truncated DtN operator is not sufficient
for uniqueness. The modified boundary condition is unique for any number of terms in the
operator. The error with the modified boundary condition remains relatively low (less than
30%) even when the criterion for uniqueness is not satisfied (Fig. 9).

FIG. 9. Dependence of the error on the number of terms in the truncated and modified operators.
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FIG. 10. Dependence of the error (with varying wave number) on the number of terms in the truncated
operator.

4.4. Linearly Varying Wave Number in a Square Cross-section

The following results are obtained for the problem described above, with a linearly
varying wave numberk= k0(x+ y)/a, wherek0b= 2. The cross-sectional eigenvaluesµ2

n

and orthonormal eigenfunctionsYn(x, y), needed to formulate DtN boundary conditions, are
found numerically in this case, by using a standard eigenvalue solver for a two-dimensional
eigenvalue problem discretized with a uniform mesh of 35× 35 nodes for a total of 1225
degrees of freedom. A Sturm sequence check [2, p. 943] is employed to verify that no
eigenvalues are missing. The accuracy of the modes employed is established by numerical
convergence studies. Numerical integration of (61) is performed in each element by the
trapezoidal rule with sufficient points to account for the oscillations ofYn. The linear
variation of k within each element is accounted for in computing the element stiffness
matrix.

In this problem there is a single positive eigenvalue. Thus, there is always a sufficient
number of terms in the DtN boundary condition and the relative error remains relatively
low (less then 20%), see Fig. 10.

5. CONCLUSIONS

This work presents the derivation and analysis of DtN formulations for unbounded wave
guides in two and three dimensions. DtN boundary conditions, relating the solution to its
normal derivative on an artificial boundary, define problems in bounded domains that are
suitable for finite element analysis. Explicit expressions are obtained for constant wave
numbers in strips and in rectangular cross sections (the extension to circular cross sections
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is straightforward). The boundary conditions are derived numerically for wave numbers
varying in the cross section, and for cross sections of general shape in three dimensions.

The bounded-domain problem obtained by employing the DtN procedure is analyzed
in its continuous form, prior to discretization. The DtN operator is expressed in the form
of infinite series. The solution of the bounded-domain problem with the full operator is a
restriction of the solution to the original problem to the bounded domain. The truncated DtN
operator, which is employed in practice, fails to inhibit higher modes, so that nonunique
solutions may occur. Simple criteria determine a sufficient number of terms in the truncated
operator for unique solutions at any given wave number. Local approximations of the
boundary conditions for constant wave numbers yield uniqueness for all wave numbers.
A simple modification of the truncated operator by the lowest-order local approximation,
which is valid for varying wave numbers, leads to boundary conditions that are unique for
any number of terms in the operator.

Numerical results validate the performance of the DtN boundary conditions for wave
guides in two and three dimensions and confirm the criteria for uniqueness. In particular,
the truncated and modified conditions perform similarly as long as there are sufficient terms
for the truncated condition to yield unique solutions. Otherwise, the modified condition is
superior, as expected.
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